If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15x^2-80=20x+5x^2
We move all terms to the left:
15x^2-80-(20x+5x^2)=0
We get rid of parentheses
15x^2-5x^2-20x-80=0
We add all the numbers together, and all the variables
10x^2-20x-80=0
a = 10; b = -20; c = -80;
Δ = b2-4ac
Δ = -202-4·10·(-80)
Δ = 3600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3600}=60$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-60}{2*10}=\frac{-40}{20} =-2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+60}{2*10}=\frac{80}{20} =4 $
| 5=g+0 | | -9=1/2x+3 | | -2-f=2 | | 1=-5-j | | -7-v=1 | | 3-w=-6 | | 22-4=6e | | 6(y-5)-8y=-34 | | c+-3=3 | | 4^x=4.2 | | 4^x=41/5 | | 2h×3=0 | | 3x/4=7/12 | | -6-i=-3 | | o+-6=-12 | | -7=-6-u | | 5(3)+x0.25=15 | | m÷3=9 | | 1=-5-t | | 90=4x+3 | | 30=5/6=x | | P(-x)=8x-5 | | l+4=12 | | P(x)=8x-5 | | 2x+2×=24 | | -10=e+-6 | | Y=3+0x | | X^2+3x+12=180 | | 3(x+8)=3-(7-1/4x) | | 5+21x^2-22x=0 | | 2x÷×=24 | | 5^x+10=65 |